Cycloid

A cycloid generated by a rolling circle

In geometry, a cycloid is the curve traced by a point on a circle as it rolls along a straight line without slipping. A cycloid is a specific form of trochoid and is an example of a roulette, a curve generated by a curve rolling on another curve.

The cycloid, with the cusps pointing upward, is the curve of fastest descent under uniform gravity (the brachistochrone curve). It is also the form of a curve for which the period of an object in simple harmonic motion (rolling up and down repetitively) along the curve does not depend on the object's starting position (the tautochrone curve). In physics, when a charged particle at rest is put under a uniform electric and magnetic field perpendicular to one another, the particle’s trajectory draws out a cycloid.

Balls rolling under uniform gravity without friction on a cycloid (black) and straight lines with various gradients. It demonstrates that the ball on the curve always beats the balls travelling in a straight line path to the intersection point of the curve and each straight line.

Developed by StudentB